Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields
نویسندگان
چکیده
We discuss several enumerative results for irreducible polynomials of a given degree and pairs of relatively prime polynomials of given degrees in several variables over finite fields. Two notions of degree, the total degree and the vector degree, are considered. We show that the number of irreducibles can be computed recursively by degree and that the number of relatively prime pairs can be expressed in terms of the number of irreducibles. We also obtain asymptotic formulas for the number of irreducibles and the number of relatively prime pairs. The asymptotic formulas for the number of irreducibles generalize and improve several previous results by Carlitz, Cohen and Bodin.
منابع مشابه
Number of Irreducible Polynomials in Several Variables over Finite Fields
We give a formula and an estimation for the number of irreducible polynomials in two (or more) variables over a finite field.
متن کاملGenerating series for irreducible polynomials over finite fields
We count the number of irreducible polynomials in several variables of a given degree over a finite field. The results are expressed in terms of a generating series, an exact formula and an asymptotic approximation. We also consider the case of the multi-degree and the case of indecomposable polynomials.
متن کاملRelatively prime polynomials and nonsingular Hankel matrices over finite fields
The probability for two monic polynomials of a positive degree n with coefficients in the finite field Fq to be relatively prime turns out to be identical with the probability for an n × n Hankel matrix over Fq to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is th...
متن کاملParity of the number of irreducible factors for composite polynomials
Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The ...
متن کاملIterated constructions of irreducible polynomials over finite fields with linearly independent roots
The paper is devoted to constructive theory of synthesis of irreducible polynomials and irreducible N-polynomials (with linearly independent roots) over finite fields. For a suitably chosen initial N-polynomial F1ðxÞAF2s 1⁄2x of degree n; polynomials FkðxÞAF2s 1⁄2x of degrees 2 n are constructed by iteration of the transformation of variable x-x þ dx ; where dAF2s and da0: It is shown that the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finite Fields and Their Applications
دوره 15 شماره
صفحات -
تاریخ انتشار 2009